Le projet Data Warehouse, un processus continu

Par   Partagez : Envoyer le lien de cet article par e-mail   

Une démarche singulière

Un processus continu

La toute première génération de Data warehouse a été marquée par une succession d'échecs. Les concepteurs appliquaient le "postulat du technicien" :
" Si je mets le maximum de données, les utilisateurs trouveront leur bonheur." Bien entendu, avec une hypothèse erronée dès l'énoncé du principe fondateur, on ne peut que bâtir des usines à gaz. En fait, le projet Data Warehouse est un processus. Il sera toujours en perpétuelle évolution, que ce soit sur le plan du nombre d'utilisateurs que celui des thématiques traitées.

Une succession de projet plus "légers"

Il est important de considérer le projet Data Warehouse, non pas comme unique, mais plutôt comme une succession de projets plus légers, focalisés sur les besoins métiers, répondant chacun à une nécessité clairement identifiée et définie. Chacun des projets s'intégrant avec le précédent et ouvrant des pistes pour les suivants. Un peu comme un puzzle sans fin.
C'est la solution pour suivre de près les attentes des utilisateurs et maîtriser le ROI du projet.

Le projet DW

Les 4 temps du projet

  • 1) Identifier le besoin auprès des utilisateurs

    Le data warehouse est le pivot du système décisionnel. Les données stockées seront transformées en informations et exploitées par les utilisateurs-décideurs. Il semble donc primordial de placer les besoins des utilisateurs au centre de la problématique.
    C'est vrai quel que soit le projet d'informatisation. Mais dans le cas du projet Data warehouse, cette omission ne pardonne pas.
    Ainsi, chacune des phases du projet sera définie sous l'éclairage des nécessités utilisateurs, des besoins métiers. On accordera un soin particulier à la délicate phase de collecte et notamment aux opérations de nettoyage, de formatage et de consolidation. Ne perdons pas de vue qu'une donnée n'a pas de valeur en soi. C'est bien l'utilisateur-décideur qui transformera les données en informations.
    Voir aussi les données de référence.
  • 2) Modéliser les données

    Adoptez un modèle spécifique orienté utilisateur et métier dans une logique décisionnelle et non un modèle qui privilégie le confort technique de l'analyste Base de données dans une logique de production. C'est une différence majeure de conception. Les modèles de structure des données normalisés ne sont pas adaptés aux besoins décisionnelles qui sollicitent de nombreux rapprochement de données. Ls modèles étoiles et flocons, les plus courants sont plus adéquats, et ce n'est pas peu dire, pour des analyses complexes. La modélisation est une tâche particulièrement complexe qui ne s'improvise pas, c'est un métier à part entière.
    Pour aller plus avant : Modéliser les données
  • 3) Choisir l'architecture technique

    Les requêtes décisionnelles un peu complexes sollicitent énormément l'architecture de traitement. Autant prendre le temps de bien la choisir en tenant compte des besoins actuels et de leurs évolutions dans un horizon de temps raisonnable. Les architectures technologiques représentent un investissement conséquent qu'il s'agit de rentabiliser dans la durée.
    Pour aller plus avant :Choisir l'architecture technique
  • 4) Implanter et déployer

    Élaboration des schémas d'accès aux données et des règles de nettoyage et de consolidation. Voir aussi Data Warehouse et DataMart.

À lire

Véritable "guide de terrain" alimenté par les 25 années d'expertise de Ralph Kimball dans le domaine du data warehouse, cet ouvrage met à la disposition des décideurs tout un ensemble d'outils et de techniques pour concevoir, développer et déployer un data warehouse au sein d'une grande entreprise.

Le data warehouse Guide de conduite de projet.Le data warehouse : Guide de conduite de projet
R. Kimball, L. Reeves, M. Ross, W. Thornthwaite
Eyrolles
576 pages
Prix : 50 Euros
Dispo chez :
www.amazon.fr  

Le livre ci-dessus est toutefois assez ancien. Pour les lecteurs avertis, il est préférable de s'intéresser à cette mise à jour majeure qui malheureusement n'est pas traduit en français.

The Data Warehouse Lifecycle Toolkit The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling
Ralph Kimball, Margy Ross,
John Wiley & Sons Ltd   Seconde édition révisée
600 pages
Prix : 36 Euros
Dispo chez :
www.amazon.fr

Guide de réalisation du système de business Intelligence de l'entreprise orienté besoins des utilisateurs pour une prise de décision efficace. Attention, il s'agit d'un ouvrage nettement moins technique que les précédents. Référence francophone du management de la performance. Plus de 40.000 exemplaires vendus.

Nouveaux tableaux de bordLes nouveaux tableaux de bord des managers
Le projet décisionnel en totalité
Alain Fernandez   Eyrolles  6ème édition
495 pages
Prix : 35 euros
Dispo chez :
www.amazon.fr
& PDF ou ePub   Format Kindle


Partagez cet article...

Envoyer le lien de cet article par e-mail   
(total partages cumulés > 165)

Si vous souhaitez partager votre point de vue sur cet article, utilisez désormais Twitter ou votre réseau social favori.

La reproduction ou la traduction totale ou partielle de ce texte, images et documents est formellement interdite. Voir ici les conditions pour publier un extrait sur votre site ou blog. Ce texte et les images et documents qu'il contient est déposé auprès de l'IDDN

Suivez aussi les news du portail sur Twitter et rejoignez-nous sur Facebook

Google+    Twitter    Facebook

Excel ® est une marque déposée de Microsoft Corp ®
Gimsi ® est une marque déposée de Alain Fernandez



Copyright : Alain FERNANDEZ ©1998-2017 Tous droits réservés Mentions légales


»» Tous les articles Piloter.org »»